| Surname |
| :--- |
| Other Names |


| Centre <br> Number | Candidate <br> Number |
| :--- | :--- |
| 2 |  |

## GCE AS/A level

## WJEC CBAC

## 1091/01

## CHEMISTRY CH1

P.M. TUESDAY, 15 May 2012
$11 / 2$ hours

## ADDITIONAL MATERIALS

In addition to this examination paper, you will need a:

- calculator;
- copy of the Periodic Table supplied by WJEC. Refer to it for any relative atomic masses you require.


## INSTRUCTIONS TO CANDIDATES

| FOR EXAMINER'S |  |  |
| :---: | :---: | :---: |
| USE ONLY |  |  |
| Section | Question | Mark |
| A | $1-5$ |  |
| B | 6 |  |
|  | 7 |  |
|  | 8 |  |
|  | 9 |  |
|  | 10 |  |
| TOTAL MARK |  |  |

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.
Write your name, centre number and candidate number in the spaces at the top of this page.
Section A Answer all questions in the spaces provided.
Section B Answer all questions in the spaces provided.
Candidates are advised to allocate their time appropriately between Section A (10 marks) and Section B (70 marks).

## INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
The maximum mark for this paper is 80 .
Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.
The $Q W C$ label alongside particular part-questions indicates those where the Quality of Written Communication is assessed.

If you run out of space, use the continuation page at the back of the booklet, taking care to number the question(s) correctly.

## SECTION A

## Answer all questions in the spaces provided.

1. Sketch a diagram to show the shape of a $p$ orbital.
2. Complete the following definition of relative atomic mass:

The relative atomic mass of an element is the average mass of one atom of the element relative to
$\qquad$
$\qquad$
3. State which one of the following contains the greatest number of molecules.

A 3 g of hydrogen
B 32 g of oxygen
C 36 g of water
D 66 g of carbon dioxide
4. Phosgene is a compound of carbon, oxygen and chlorine. It is used to make polyurethanes and polycarbonates. Its percentage composition, by mass, is as follows.
C $12.1 \%$
O $16.2 \%$
Cl 71.7\%
(a) Calculate the empirical formula of this compound.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(b) What other information would you need to know to be able to deduce the molecular formula of this compound?
5. (a) The electronic structures of five atoms, $\mathbf{A}$ to $\mathbf{E}$, are listed below. Arrange these atoms in order of increasing molar first ionisation energy.

| Atom | A | B | C | D | E |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Electronic structure | $1 \mathrm{~s}^{2}$ | $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2}$ | $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{1}$ | $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{3}$ | $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6}$ |

lowest
highest
(b) State, giving a reason for your choice, which one of the following gives the first four ionisation energies for silicon, Si .

|  | Ionisation energy $/ \mathrm{kJ} \mathrm{mol}^{-1}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 1st | 2nd | 3 rd | 4th |
| $\mathbf{W}$ | 496 | 4563 | 6913 | 9544 |
| $\mathbf{X}$ | 578 | 1817 | 2745 | 11578 |
| $\mathbf{Y}$ | 738 | 1451 | 7733 | 10541 |
| $\mathbf{Z}$ | 789 | 1577 | 3232 | 4356 |

Letter $\qquad$
Reason

Section A Total [10]

## SECTION B

## Answer all questions in the spaces provided.

6. Magnesium is best known for burning with a characteristic brilliant white light, however in industry it is the third most commonly used structural metal. The metal itself was first produced by Sir Humphry Davy in 1808 by the electrolysis of a mixture of magnesia and mercury oxide.
(a) Magnesium has three stable isotopes ${ }^{24} \mathrm{Mg},{ }^{25} \mathrm{Mg}$ and ${ }^{26} \mathrm{Mg}$.
(i) State the number of protons present in an atom of ${ }^{24} \mathrm{Mg}$.
(ii) Deduce the number of neutrons present in an atom of ${ }^{26} \mathrm{Mg}$.
(iii) In order to calculate the relative atomic mass of magnesium, what would you need to know in addition to the relative mass of each isotope?
(b) Magnesium also has a radioactive isotope ${ }^{28} \mathrm{Mg}$ which has a half-life of 21 hours.
(i) If you started with 2.0 g of ${ }^{28} \mathrm{Mg}$, calculate the mass of this isotope remaining after 84 hours.
(ii) Name one useful radioactive isotope and briefly describe how it is used in medicine, industry or analysis.
(c) In order to obtain a mass spectrum of a gaseous sample of magnesium, the sample must be ionised.
(i) State how the magnesium atoms are ionised in the sample.
(ii) Give a reason why it is necessary to ionise the magnesium atoms in the sample.
$\qquad$
$\qquad$
(iii) State how the ions of magnesium are separated.
$\qquad$
$\qquad$
(d) Magnesium reacts with nitrogen forming magnesium nitride, which is an ionic compound.

By inserting arrows to represent electrons, complete the boxes below to show the electronic configuration of a nitride ion, $\mathrm{N}^{3-}$.

(e) Magnesium nitride reacts with water to form magnesium hydroxide and ammonia.

(i) Balance the equation above.
(ii) Calculate the minimum mass of magnesium nitride required to form 1.75 g of magnesium hydroxide, giving your answer to three significant figures.
$\qquad$
$\qquad$
$\qquad$
7. Judith carried out three experiments to study the reaction between powdered magnesium and hydrochloric acid.
She used a gas syringe to measure the volume of hydrogen evolved, at room temperature and pressure, at set intervals. In each case, the amount of acid used was sufficient to react with all the magnesium.

$$
\mathrm{Mg}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

The details of each experiment are shown in Table 1 below.

| Experiment | Mass of <br> magnesium $/ \mathrm{g}$ | Volume of HCl <br> $/ \mathrm{cm}^{3}$ | Concentration of HCl <br> $/ \mathrm{mol} \mathrm{dm}^{-3}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{A}$ | 0.061 | 40.0 | 0.50 |
| $\mathbf{B}$ | 0.101 | 40.0 | 1.00 |
| $\mathbf{C}$ | 0.101 | 20.0 | 2.00 |

Table 1

The results obtained in experiment $\mathbf{C}$ are shown in Table 2 below.

| Time / s | Volume of hydrogen / cm ${ }^{3}$ |
| :---: | :---: |
| 0 | 0 |
| 20 | 50 |
| 40 | 75 |
| 60 | 88 |
| 80 | 92 |
| 100 | 100 |
| 120 | 100 |

Table 2
(a) The results for experiments $\mathbf{A}$ and $\mathbf{B}$ have already been plotted on the grid below.

On the same grid, plot the results for experiment $\mathbf{C}$ and draw a line of best fit.

(b) (i) State in which experiment the reaction begins most rapidly and use the graph to explain your choice.
$\qquad$
(ii) By referring to Table 1 give an explanation of your answer in part (i).
$\qquad$
$\qquad$
(c) State the volume of hydrogen evolved after 30 seconds in experiment $\mathbf{B}$.
(d) Using only the values in Table 1, show that the acid is in excess in experiment $\mathbf{C}$.
(e) (i) In experiment $\mathbf{A}, 0.061 \mathrm{~g}$ of magnesium produces $60 \mathrm{~cm}^{3}$ of hydrogen. If 0.122 g of magnesium were used, under the same conditions, then $120 \mathrm{~cm}^{3}$ would be produced. Explain why using 0.610 g would not produce $600 \mathrm{~cm}^{3}$ of hydrogen. [1]
(ii) Calculate the volume of hydrogen produced using 0.610 g of magnesium. ( 1 mole of gas molecules occupies $24 \mathrm{dm}^{3}$ at $25^{\circ} \mathrm{C}$ )
$\qquad$
$\qquad$
$\qquad$
(f) State one method of slowing down the reaction in experiment $\mathbf{C}$ and use collision theory to explain your choice. Assume that the quantities of magnesium and hydrochloric acid are the same as those in Table 1.
8. (a) The vast majority of motor vehicles worldwide are powered by petrol or diesel which come from crude oil. Give two reasons why we cannot rely indefinitely on oil as a source of transport fuel.
(b) Many vehicle manufacturers around the world have made the development of alternative fuels a priority. One such fuel being studied is hydrogen.

Its main advantage is that the only waste product is water, however hydrogen does not occur naturally on Earth. It is produced by passing an electric current through water.
(i) A leading car manufacturer said,
"Cars powered by hydrogen will be pollution-free".
Give two reasons why this is not necessarily true.
(ii) A spokesperson for a safety group said,
"Hydrogen can burn explosively. It must not be used in cars unless it is $100 \%$ safe". State, giving a reason, whether you agree with this.
(c) The first line in the visible atomic emission spectrum for hydrogen has a wavelength of 656 nm , while that for helium has a wavelength of 707 nm .
State, giving a reason, which line has
(i) the higher frequency,
(ii) the higher energy.
(d) The first ionisation energy of helium is $2370 \mathrm{~kJ} \mathrm{~mol}^{-1}$ while that of neon is $2080 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Explain why neon has a lower first ionisation energy than helium.
(e) Another noble gas is radon. Its more stable isotope ${ }^{222} \mathrm{Rn}$ has a half-life of 3.8 days, decays by $\alpha$-emission and is responsible for the majority of the public exposure to ionising radiation.
(i) Give the symbol and mass number of the atom formed by the loss of one $\alpha$-particle from an atom of ${ }^{222} \mathrm{Rn}$.
(ii) Explain why doctors are concerned that an over-exposure to radon may cause lung cancer.
9. Ethanol is an important industrial chemical and can be made by the direct hydration of ethene using a phosphoric acid catalyst.

$$
\mathrm{CH}_{2}=\mathrm{CH}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(\mathrm{~g}) \quad \Delta \mathrm{H}=-46 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

(a) State, giving your reasons, the general conditions of temperature and pressure required to give a high equilibrium yield of ethanol in this process.
(b) Using the standard enthalpy change for the reaction above and the standard enthalpy changes of formation $\left(\Delta \mathrm{H}_{f}^{\ominus}\right)$ given in the table below, calculate the standard enthalpy change of formation of gaseous ethanol.

| Compound | $\Delta \mathrm{H}_{f}^{\ominus} / \mathrm{kJ} \mathrm{mol}^{-1}$ |
| :---: | :---: |
| $\mathrm{CH}_{2}=\mathrm{CH}_{2}(\mathrm{~g})$ | 52.3 |
| $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ | -242 |

(c) Another way of calculating the enthalpy change of a reaction is by using average bond enthalpies. Use the values in the table below to calculate the enthalpy change for the direct hydration of ethene.


| Bond | Average bond enthalpy $/ \mathrm{kJ} \mathrm{mol}^{-1}$ |
| :---: | :---: |
| $\mathrm{C}-\mathrm{C}$ | 348 |
| $\mathrm{C}=\mathrm{C}$ | 612 |
| $\mathrm{C}-\mathrm{H}$ | 412 |
| $\mathrm{C}-\mathrm{O}$ | 360 |
| $\mathrm{O}-\mathrm{H}$ | 463 |

(e) Phosphoric acid is an example of a heterogeneous catalyst. Explain the term heterogeneous in this context.
$\qquad$
(i) Sketch on the axes below the energy profile for an exothermic reaction.

(ii) On the same axes, sketch and label the energy profile if the same reaction is carried out using a catalyst.
10. Berian was asked to find the identity of a Group 1 metal hydroxide by titration.

He was told to use the following method.

- Fill a burette with hydrochloric acid solution.
- Accurately weigh about 1.14 g of the metal hydroxide.
- Dissolve all the metal hydroxide in water, transfer the solution to a volumetric flask then add more water to make exactly $250 \mathrm{~cm}^{3}$ of solution.
- Accurately transfer $25.0 \mathrm{~cm}^{3}$ of this solution into a conical flask.
- Add 2-3 drops of a suitable indicator to this solution.
- Carry out a rough titration of this solution with the hydrochloric acid.
- Accurately repeat the titration several times and calculate a mean titre.

Berian's results are shown below:
Mass of metal hydroxide $=1.14 \mathrm{~g}$
Concentration of acid solution $=0.730 \mathrm{~g} \mathrm{HCl}$ in $100 \mathrm{~cm}^{3}$ of water
Mean titre $=23.80 \mathrm{~cm}^{3}$
(a) Give a reason why Berian does not simply add 1.14 g of metal hydroxide to $250 \mathrm{~cm}^{3}$ of water.
(b) Name a suitable piece of apparatus for transferring $25.0 \mathrm{~cm}^{3}$ of the metal hydroxide solution to a conical flask.
(c) State why he adds an indicator to this solution.
(d) Suggest why Berian was told to carry out a rough titration first.
$\qquad$
$\qquad$
(e) Explain why he carried out several titrations and calculated a mean value.
$(f)$ The equation for the reaction between the metal hydroxide and hydrochloric acid is given below. M represents the symbol of the Group 1 metal.

$$
\mathrm{MOH}+\mathrm{HCl} \longrightarrow \mathrm{MCl}+\mathrm{H}_{2} \mathrm{O}
$$

(i) Calculate the concentration, in $\mathrm{mol} \mathrm{dm}^{-3}$, of the HCl in the burette.
$\qquad$
$\qquad$
(ii) Calculate the number of moles of HCl used in the titration.
$\qquad$
(iii) Deduce the number of moles of MOH in $25.0 \mathrm{~cm}^{3}$ of the solution.

Calculate the total number of moles of MOH in the original solution.
$\qquad$
$\qquad$
(v) Calculate the relative molecular mass of MOH .
$\qquad$
$\qquad$
(vi) Deduce the Group 1 metal in the hydroxide.
$\qquad$

| Question number | Write the question numbers in the left-hand margin | $\left\lvert\, \begin{gathered} \text { Examiner } \\ \text { only } \end{gathered}\right.$ |
| :---: | :---: | :---: |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

# GCE AS/A level <br> $\frac{\text { WJEC }}{\text { CBAC }}$ 1091/01-A <br> <br> CHEMISTRY - PERIODIC TABLE <br> <br> CHEMISTRY - PERIODIC TABLE FOR USE WITH CH1 

 FOR USE WITH CH1}
P.M. TUESDAY, 15 May 2012
$2$


